VARIATIONAL SOLUTION OF A HEAT-CONDUCTION
PROBLEM FOR A REGION WITH MOVING BOUNDARIES

D. M. Yanbulatov and N. M. Tsirel'man UDC 536.21

The Ainola variational principle is applied to a heat-conduction problem with moving bound-
aries.

Since the exact solution of a nonstationary heat-conduction problem for a region with moving bound-
aries is difficult, cumbersome, and inconvenient for practical calculations [1], we seek an approximate
solution by using the variational formulation of L. Ya. Ainola [2] for the following boundary value problem:
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where @(x), Ti(7), and Tya(7) are continuous functions satisfying the matching conditions
Tye (0) = ¢ (5, (0)),
Tye (0) = 9 (5, (0)), )
and s;(7) and s,(7) are continuous differentiable functions.

By introducing a new unknown function u(x, 7) such that
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we reduce problem (1)-(4) to a problem with zero initial and boundary conditions:
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We extend the domain D of the phase plane bounded by the
characteristics 7= 0 and 7=t and the curves x = 8;(7) and x = 8,(7)
to domain D bounded by the characteristics 7= 0 and 7= 2t and
the curves x = §;(1) and x = s,(7) (Fig. 1) such that
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Fig. 1. Domain with moving bound- vy {51 2t—n), t<vL2,
aries in the x-7 phase plane. _ 50, 0<t<t,
(0 = {s.z @ —7), t<t<2L (8)

Then the following statement is true in domain D: if u(x, 7) is a solution of problem (1')-#4') for 51(7)
<X < 8(7, 0< T<2t, the functional

J () = Sj{

has a stationary value; i.e., 6J() = 0.
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This is easy to prove by starting with the equality
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which is valid for any functions F and G which are continuous in D, for any condition (2'), and conditions
(3') and @) for x = s;(7), 1 =1, 2. We note that s{(7) may not be_ differentiable at 7=t. Then in the inter-
val t—e < 7<t + g, where & > 0 is a sufficiently small number, s;(7) can be smoothed so that it will be dif-
ferentiable for all 0 < 7 < 2t, as shown by the dashed line in Fig. 1. Moreover, we are interested in values
of u{x, 7) only in domain D, i.e., for 0 < 7 <t, and values of t > 0 have no practical significance.

As an example we consider the use of the functional (9) to obtain an approximate analytical solution
of the symmetrical problem of the temperature distribution in homogeneous one-dimensional bodies (plate,
cylinder, sphere) without heat sources for a constant initial teraperature and for a constant temperature
on a moving boundary. In this case the boundary value problem (1)-@) has the form
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To satisfy the matching condition (5) we set
—T,

| T,
2
T@@ﬂ=nm={ “

T, . < T

£ (t—1)+T, 0L,

Further, in accord with (6); we introduce a function u(x, 7) such that
T(x, )=u(x 19+ T.(7).
As a result the boundary value problem (1")-@4") becomes:
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and the functional (9) can be written as
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where, as indicated above
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Following Kantorovich [3] we set
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where P(7) is an unknown function satisfying the condition ¢(0) = 0. Integrating (9') with respect to x gives
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Taking account of the fact that s(7) = s(2t—7) Euler's equation for this functional will be
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For the ¥(7) of interest to us, when 0 < 7 <t, we find by using (7') that the condition for J to be sta-

tionary is given by the equation
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By going to the limit 7y, — 0 in (11) we obtain the first approximation to the solution of problem (1™)-

4"y in the form
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In the special case of a boundary moving uniformly from s(0) =1, i.e., for s(1) = vr+ [;, we have
e=m+4 | — X2 p{ mim - 4) ar ‘
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To obtain the second approximation we set
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where ¥;(7) and ¥,(7) are unknown functions satisfying the condition ¥;(0) = ¢)»(0) = 0.

The condition for the functional J to be stationary is given by the following system of Euler equationé:
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The solution of this system of first order equations with variable coefficients is [4]
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RPRGER YU ) (e [ 4y
% i e [ 52 fﬁwy
0

Thus the second approximation to the solution of problem (1™)-@™) has the form
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In conclusion we note that the method described here for solving a heat-conduction problem for a re-
gion with moving boundaries can be used for other boundary conditions also.

NOTATION
TX, 7 is the running temperature;
0 = (T(x, D—Te)/(Ty—Tc) is the dimensionless relative temperature;
T, is the initial temperature;
Te is the temperature of the medium;
1y, = 8(0) is the initial position of the moving boundary;
x = 85(7) is the running position of the moving boundary;
X is the coordinate of a point of the body;
Tandt are values of the time;
a = Acp is the thermal diffusivity;
A is the thermal conductivity;
cp - is the volumetric heat capacity of the body;
gy ®, 7 is the volumetric heat-release rate.
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